Label Inference with Registration and Patch Priors
نویسندگان
چکیده
In this paper, we present a novel label inference method that integrates registration and patch priors, and serves as a remedy for labelling errors around structural boundaries. With the initial label map provided by nonrigid registration methods, its corresponding signed distance function can be estimated and used to evaluate the segmentation confidence. The pixels with less confident labels are selected as candidate nodes to be refined and those with relatively confident results are settled as seeds. The affinity between seeds and candidate nodes, which consists of regular image lattice connections, registration prior based on signed distance and patch prior from the warped atlas, is encoded to guide the label inference procedure. For method evaluation, experiments have been carried out on two publicly available data sets and it only takes several seconds for our method to improve the segmentation quality significantly.
منابع مشابه
Combining patch-based strategies and non-rigid registration-based label fusion methods
The objective of this study is to develop a patch-based labeling method that cooperates with a label fusion using non-rigid registrations. We present a novel patch-based label fusion method, whose selected patches and their weights are calculated from a combination of similarity measures between patches using intensity-based distances and labeling-based distances, where a previous labeling of t...
متن کاملNonrigid Image Registration Using Higher-Order MRF Model with Dense Local Descriptor
In this paper, we propose a nonrigid image registration method using a Markov Random Field (MRF) energy model with higher-order smoothness priors and a dense local descriptor. The image registration is designed as finding an optimal labeling of the MRF energy model where the label corresponds to a discrete displacement vector. The proposed MRF energy model uses matching scores of dense local de...
متن کاملBayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کاملPatch-based segmentation using expert priors: Application to hippocampus and ventricle segmentation
Quantitative magnetic resonance analysis often requires accurate, robust, and reliable automatic extraction of anatomical structures. Recently, template-warping methods incorporating a label fusion strategy have demonstrated high accuracy in segmenting cerebral structures. In this study, we propose a novel patch-based method using expert manual segmentations as priors to achieve this task. Insp...
متن کاملAtlas Forests Multi-Atlas Label Propagation with Atlas Encoding by Randomized Forests
We describe our submission to the MICCAI 2013 SATA Challenge. The method is based on multi-atlas based label propagation, its major characteristic being that is uses the concept of an atlas forest to represent an atlas. This results in an efficient scheme, which requires only a single registration to label a target. Fusion of the probabilistic label proposals from each atlas is done by averagin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
دوره 17 Pt 1 شماره
صفحات -
تاریخ انتشار 2014